
Technical Note No. 105 Page 1 of 8
 STRAIN GAGE OUTPUT IN RESPONSE TO FREE THERMAL
EXPANSION, NON-THERMAL STRESS, AND THERMAL STRESS

Introduction

It is often the goal of the stress analyst to determine the state of stress in a part or structure
so that a comparison to some stress-based failure criterion (e.g. yield stress, maximum
principal stress, von Mises, etc.) can be conducted. For an isotropic material over its elastic
range, the state of stress can be obtained using experimental strain data and the biaxial1
form of Hooke’s Law.

Since a lot of experimental strain data is obtained using the electrical resistance strain gage it
is important to understand the output of the strain gage in response to 1) free thermal
expansion, 2) non-thermal stress, and 3) thermal stress.

Strain Gage Thermal Output
The output of the electrical resistance strain gage is a function of the change of resistance,ΔR, of the grid 
conductor. Contributions to ΔR can be separated into two classifications:

I. Mechanical (i.e. stress-induced) strain, ε= ΔL/L, of the substrate (i.e. the material to which the gage is 
bonded).
II. Temperature change of grid conductor and substrate.

The latter of these two classifications is manifested as thermal output2 and is quantified by the following 
equation3:

1 Most likely a biaxial (not uniaxial) state of stress exists on the surface of a test part or structure. Thus the acquisition of proper strain gage data 
requires the use of a two-element TEE rosette aligned with the principal stress axes. In case the directions of principal axes are unknown, a 
three-element rosette is required.  With rosette data in hand, the biaxial form of generalized Hooke's Law can then be used to calculate the prin-
cipal stresses - see the Appendix on page 8..
2 In the past, resistance changes due solely to temperature change were referred to as apparent strain, but by international agreement the 
proper term to use now is thermal output. 
3From Measurements Group Tech Note TN-504 Strain Gage Thermal Output and Gage Factor Variation with Temperature. This equation 
assumes free thermal expansion (contraction) and therefore contains a correction factor that accounts for the transverse sensitivity of the strain 
gage subjected to equally biaxial substrate expansion (contraction) - more about this on page 4.
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where:
ΔR is the change of resistance due to change of temperature.

R0 the initial gage resistance and the subscript TO signifies Thermal Output.

βSG  is the temperature coefficient of resistance of the strain gage grid conductor. 

FSG  is the strain gage's Gage Factor as provided by the strain gage manufacturer.

Kt  is the transverse sensitivity of the strain gage. 

ν0 is the Poisson ratio of the standard test material used by the manufacturer in calibrating the gage to      
determine the Gage Factor.

(αSUB−αSG) is the difference in thermal coefficient of expansion between the substrate and the grid respectively. 

ΔT is the temperature change from some initial reference.

Note there are two fundamental contributors to thermal output,
a) The grid resistance change due to the temperature dependent resistivity of the grid conductor.

b) The relative difference in thermal coefficient of expansion between the grid and the substrate.

Item a) is self-explanatory; item b) deserves a little more of our attention:

To the degree that the coefficient of thermal expansion of the grid and substrate differ, there will be a 
mechanical strain induced in the grid. Since the grid is by design sensitive to mechanical strain, a 
corresponding resistance change will occur and thus contribute to thermal output.

Free Thermal Expansion
Ideally, the strain gage output that results from free thermal expansion (also understood to include 
contraction) should be zero. The reason this is desirable is because there is no stress associated with 
free thermal expansion. Furthermore, with no output due to free thermal expansion, there will be no 
"contamination" of any gage output that does result from stress whether the stress is non-thermally 
induced, thermally induced, or a combination of both.

For the case of free thermal expansion, both a dimensional change and a temperature change occur 
coincidentally. Because no output is desired in this case, the gage manufacturers have developed 
special grid alloys that result in near zero output under the condition of free thermal expansion. In this 
case, as the grid and substrate it is bonded to change in dimension and temperature, ΔR as expressed 
in the thermal output equation given on page 1 remains nearly zero. These special alloys are employed 
in what are referred to as self-temperature compensated (STC) gages. It follows that in order to achieve 
the STC functionality, the gage alloy needs to be tailored to the coefficient of thermal expansion of the 
substrate. For example, in the case of a substrate made of steel, gages with a specified STC of 6 ppm/
°F should be selected because this most closely matches the coefficient of thermal expansion of steel. 
Strain gage manufacturers also typically provide a data sheet with STC gages that shows thermal output 
versus temperature4

4Improved accuracy can be obtained if test part temperature is available. In this case thermal output data provided by the gage manufacturer 
can be subtracted from the test data. Another technique is to temperature soak the test part while keeping it mechanically and thermally stress 
free and thereby experimentally determine thermal output as a function of temperature and then use this data for subsequent correction. Yet a 
third technique is to configure a bridge system that includes a thermally integrated and stress free dummy completion gage.
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Non -Thermal Stress

Non-thermal stress as defined here concerns a dimensional change of material due to application of a 
mechanical stress at constant temperature. We just saw above that for an STC gage installation under-
going free thermal expansion (or contraction), a near zero output is produced when a change of both 
substrate dimension and temperature occurs. Therefore, it follows that a non-zero output will result with 
the same change in substrate dimension (albeit this time via applied stress) and no change in tempera-
ture. The gage output that results in this case is related to the mechanical (stress-induced) strain in the 
substrate, ε = ΔL/L, and this strain is related to the applied stress via Hooke's Law. 

Thermal Stress
This case concerns a third permutation of dimension and temperature change (or lack thereof): 
specifically, no allowed change of dimension (i.e. a constrained substrate) with an accompanying 
change of temperature. Assuming a temperature compensated gage installation and, using similar 
reasoning as above, we expect (and get) a non-zero ΔR output. What does this gage output represent?  
A simple thought experiment gives the answer: the output is the same as one would get if the part were 
allowed to freely expand due to an identical temperature change, and then, while held at that final 
temperature, squeezed back to the exact dimension of the original constraints by applying a mechanical 
compressive stress.  The output from the last step in this thought experiment is of course the 
compressive strain related via Hooke's Law to the applied mechanical compressive stress. To help 
convince one's self that this is indeed the answer consider this: The strain gage neither knows or cares 
how the part it is bonded to arrives to a thermally-changed and physically-constrained state of existence, 
be it path 1: constrained, then heated; or path 2: free, heated, then mechanically stressed back to the 
initially constrained dimension of path 1. Figure 1 on page 7 should help to clarify the definitions and 
relationships of free thermal expansion, non-thermal stress, and thermal stress.

Before we leave the case of thermal stress as manifested by a constrained substrate that undergoes a 
temperature change, it is instructive to delve a little deeper into the specific source of the gage's output. 
Recall that the output of a strain gage can be separated into three sources: 1) mechanical (stress-
induced) strain of substrate, 2) temperature-induced resistance change of the grid conductor, and 3) 
difference of coefficient of thermal expansion between grid and substrate - the latter two, as we have 
seen, being contributors to thermal output. Let us now perform a direct comparison of free thermal 
expansion versus uni-axial thermal stress (uni-axially constrained part) for each of these three sources:

• Free Thermal Expansion
1. Mechanical (stress-induced) strain in substrate = 0 (there is a dimensional change associated with thermal strain but since 

stress = 0 there is no associated stress-induced ΔL dimensional change, therefore mechanical strain ε = ΔL/L = 0)..

2. Grid resistance change = [βSG] ΔT

3. Difference of coeff. of thermal expansion between substrate and grid =

For an STC gage installation, 2) and 3) are nearly equal and opposite so as to produce the 
desired near zero output.
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•  Uni-Axial Thermal Stress (Uni-Axially Constrained Part with Temperature Change) 

1.  Mechanical (stress-induced) strain in substrate = 0 (although now stress ≠ 0, mechanical strain is still = 0 since part 
is constrained i.e. ΔL = 0 therefore mechanical strain ε = ΔL/L remains = 0)

2. Grid resistance change =  (this value remains the same as for the free thermal expansion case)
3. Difference of coefficient of thermal expansion between substrate and grid. 

Now items 2) and 3) are not nearly equal and opposite. This is because the coefficient of 
thermal expansion of the substrate along the grid axis is now effectively equal to zero due to it 
being constrained - and therein lies the source of non-zero gage output for the case of thermal 
stress. To illustrate: as the constrained substrate is heated, the strain gage grid attempts to 
expand against a substrate that now has an effective coefficient of thermal expansion equal to 
zero.  This action manifests as compressive mechanical strain in the grid and as we have seen 
from the thought experiment described earlier, the resulting output of the gage is equivalent to 
the compressive strain related via Hooke's Law to the thermally induced stress in the substrate.

To further illustrate the point:
Using the Thermal Output equation given on page 1 for the case of steel with αSUB = 6 PPM/˚F 
we have:

This equation contains a correction factor (the quotient within the parenthesis). Correction is 
needed due to the transverse sensitivity (Kt) of the gage. The correction factor accounts for 
both: 1) the fact that the thermal strain induced during free thermal expansion is biaxial and 
equal in both directions and 2) the manner in which the gage was calibrated to obtain FSG (i.e. 
in a uniaxial stress field on a material with Poisson ratio = ν0). Since Kt is relatively “very small” 
the quotient within the parentheses is ≈ 1. Therefore for the purpose of this discussion we will 
consider transverse sensitivity of the gage to be negligible. Setting Kt = 0 and distributing terms 
the above equation can be rewritten as:
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Dividing through by the gage factor FSG and assuming for the sake of this discussion 
a“perfectly” self temperature compensated (STC) gage, i.e. one that gives exactly zero gage 
output for a given ΔT of free thermal expansion,
we get:

                             (eq 1)

Let us now express the gage’s output that corresponds to the condition of heating a piece of 
steel constrained only along the direction of the grid axis of the gage. We will call the gage 
output in this case εcon. This case is tantamount to an imaginary material such that αSUB = 0 
PPM/˚F along the grid axis albeit retaining in the transverse direction an αSUB = 6 PPM/˚F and 
the “freedom” to move in that direction. We therefore recognize that there will exist a component 
of substrate displacement (thermal strain) transverse to the gage grid due to the free thermal 
expansion in that direction in addition to the Poisson strain (also in the transverse direction) 
created by the thermal stress due to the constraint. But, since we assume Kt = 0, the adaptation 
of the Thermal Output equation for this case is straightforward. Proceeding then with the 
Thermal Output equation to express the gage output of our imaginary material
we get:

                               (eq 2)

Taking the difference between the free thermal expansion gage output (εfree) and the gage 
output due to heating the constrained piece of steel (εcon) we can eliminate the βSG, FSG , and 
αSG terms in equations (1) and (2) and since we assumed εfree = 0 we now have:

This is the result we expect from our thought experiment where the free thermally expanded 
material is "squeezed back" along the direction of the grid axis to its original dimension. In other 
words, during free thermal expansion the piece "grows" along the grid axis an amount equal to 
6 PPM/˚F and thus the required "squeeze-back" along the grid axis needs to be of an equal and 
opposite amount of microstrain. Based on the thought experiment alone the reader should be 
convinced that a more rigorous treatment that accounts for Kt ≠ 0 as well as non-perfect STC 
behavior* will not detract from this result.

* See footnote on page 2
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Summary

In summary, the temperature compensated electrical resistance strain gage:

1. Will produce zero (or near-zero) output in response to free thermal expansion. There are 
several practical techniques to compensate for non-zero free thermal expansion output. 
Zero or "near-zero" output in response to free thermal expansion is desirable because there 
is no stress associated with free thermal expansion.

2. Will respond to non-thermal stress in terms of stress related strain as manifested by the stress-
induced ΔL/L dimensional change in the substrate. This strain output is related to the stress via 
Hooke’s Law.

3. Will respond to thermal stress in terms of stress-related indicated strain as manifested by 
strain gage thermally induced output and this strain data is related to the thermally induced 
stress via Hooke’s Law.

In the most general case, the surface of a part or structure will experience some combination of 
free thermal expansion, non-thermal stress, and thermal stress. The fact that the temperature 
compensated electrical resistance strain gage effectively ignores free thermal expansion and 
produces output due to both non-thermal and thermal stress in terms of strain data that can be 
used to calculate total surface stress via the biaxial form of Hooke's Law is an elegant and 
useful feature that should not go unappreciated by the stress analyst.

ADVISORY ON THE USE OF EXPERIMENTAL STRAIN DATA TO CORRELATE A FINITE 
ELEMENT MODEL (FEM) FOR A THERMALLY LOADED STRUCTURE

As we have seen, the temperature compensated strain gage: 1) does not produce output 
when a structural dimension change occurs due to free thermal expansion and 2) does 
produce output when no structural dimension change occurs due to thermal stress.  In light of 
this it is advised that correlation of an FEM with experimental strain data for a thermally 
loaded structure not be done on a strain-results basis.  The experimental strain data should 
be transformed into the stress domain and the correlation then performed on a stress-results 
gage rosettes and the biaxial form Hooke’s Law can achieve the transformation of the 
experimental strain data to stress data.
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Figure 1. Illustrative relationship between free thermal expansion, non-thermal stress, and 
thermal stress with regard to STC gage output (where the STC feature here exactly 

compensates for free thermal expansion).
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APPENDIX

The biaxial form of Hooke’s Law:

where:

*

A few words about the von Mises Failure Criterion:
Of the several stress-based failure criteria, the von Mises criterion agrees the best with failure-by-yielding in ductile materials.

The von Mises criterion accounts for combined stresses and is based on material distortion or change of shape and thus takes 
into account failure due to shear stresses. This is why it is the best failure criterion to use for ductile materials.

In practice, the von Mises “stress” (a calculated value with units of stress) is compared to a benchmark, namely the ductile 
material’s tensile yield strength. A von Mises stress value less than the material’s tensile yield strength is desireable. A von 
Mises stress value equal to the material’s tensile yield strength indicates impending material yield.

As mentioned above, the von Mises criterion takes into account shear stress. To check this, consider the engineering “rule of 
thumb” that “shear yield strength is typically ~ 60% of tensile yield strength for ductile materials”. This rule of thumb is supported 
by published shear and tensile yield strengths of ductile materials.

The biaxial form of the von Mises stress is:

             
Consider the condition of pure-shear. A quick inspection of Mohr’s circle for this condition shows that the principal 
stresses are equal and opposite to one another, and furthermore, equal to the magnitude of pure-shear stress. Let 
us now normalize the principal stresses with respect to the aforementioned tensile yield strength benchmark. We 
do this by making σP  = 1 and σQ  = -1. This gives a σVM = = 1.73 meaning that when the magnitude of the princi-
pal stresses equals the tensile yield strength, the von Mises stress exceeds the tensile yield strength benchmark 
by a factor of 1.73 (not good). This means in order for the von Mises stress to equal the tensile yield strength 
benchmark, the magnitude of the principal stresses must be reduced by a factor of 1/1.73 or 58%, and since the 
magnitude of the principal stresses equals the magnitude of the pure-shear stress, the magnitude of pure-shear 
stress to cause impending yield is equal to 58% of the tensile yield strength. Thus the establishment of a link 
between the above stated rule of thumb and the von Mises failure criterion.

*See for example Measurements Group Tech Note TN-515 Strain Gage Rosettes-Selection, Application and Data Reduction
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